Package: adaptMCMC 1.5

adaptMCMC: Implementation of a Generic Adaptive Monte Carlo Markov Chain Sampler

Enables sampling from arbitrary distributions if the log density is known up to a constant; a common situation in the context of Bayesian inference. The implemented sampling algorithm was proposed by Vihola (2012) <doi:10.1007/s11222-011-9269-5> and achieves often a high efficiency by tuning the proposal distributions to a user defined acceptance rate.

Authors:Andreas Scheidegger, <[email protected]>, <[email protected]>

adaptMCMC_1.5.tar.gz
adaptMCMC_1.5.zip(r-4.5)adaptMCMC_1.5.zip(r-4.4)adaptMCMC_1.5.zip(r-4.3)
adaptMCMC_1.5.tgz(r-4.5-any)adaptMCMC_1.5.tgz(r-4.4-any)adaptMCMC_1.5.tgz(r-4.3-any)
adaptMCMC_1.5.tar.gz(r-4.5-noble)adaptMCMC_1.5.tar.gz(r-4.4-noble)
adaptMCMC_1.5.tgz(r-4.4-emscripten)adaptMCMC_1.5.tgz(r-4.3-emscripten)
adaptMCMC.pdf |adaptMCMC.html
adaptMCMC/json (API)

# Install 'adaptMCMC' in R:
install.packages('adaptMCMC', repos = c('https://scheidan.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/scheidan/adaptmcmc/issues

On CRAN:

Conda:

6.31 score 10 stars 10 packages 133 scripts 1.0k downloads 1 mentions 4 exports 6 dependencies

Last updated 1 years agofrom:b9d2c84673. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 22 2025
R-4.5-winOKFeb 22 2025
R-4.5-macOKFeb 22 2025
R-4.5-linuxOKFeb 22 2025
R-4.4-winOKFeb 22 2025
R-4.4-macOKFeb 22 2025
R-4.3-winOKFeb 22 2025
R-4.3-macOKFeb 22 2025

Exports:convert.to.codaMCMCMCMC.add.samplesMCMC.parallel

Dependencies:codalatticeMatrixramcmcRcppRcppArmadillo